Herz-Kreislauf-Erkrankungen und Arteriosklerose können mit Hilfe von regelmäßigem Fasten und Kalorienreduzierung behandelt und vorgebeugt werden. Wissenschaftliche Belege:
The effects of three-week fasting diet on blood pressure, lipid profile and glucoregulation in extremely obese patients 2007 Jul-aug: 135 (7-8): 440-6 Beleslin B, Ciri§?? J, Zarkovi§?? M, Vujovi§?? S, Trbojevi§?? B, Drezgi§?? M. INTRODUCTION: Obesity is often accompanied by a number of complications including diabetes mellitus and cardiovascular diseases. Elevated blood pressure and lipids, as well as deterioration of glucoregulation are attributed, as the most significant factors, to development of diabetes mellitus and cardiovascular complications in obese patients. OBJECTIVE: The aim of our study was to evaluate the effects of a fasting diet on blood pressure, lipid profile and glucoregulatory parameters. METHOD: We included 110 patients (33 male and 77 female; mean age 35 +/- 1 years, body weight 131.7 +/- 2.6 kg, body mass index 45.4 +/- 0.8 kg/m2) who were hospitalized for three weeks for the treatment of extreme obesity with the fasting diet. At the beginning, during, and at the end of this period, we evaluated changes in blood pressure, lipid profile, as well as parameters of glucoregulation including glycaemia, insulinaemia, and insulin sensitivity by HOMA. Oral glucose tolerance test (OGTT) was performed in all patients at the beginning and at the end of the fasting diet. RESULTS: During the fasting diet, the body weight decreased from 131.7 +/- 2.6 kg to 117.7 +/- 2.4 kg (p < 0.001), the body mass index decreased from 45.4 +/- 0.8 kg/m2 to 40.8 +/- 0.8 kg/m2 (p < 0.001), and both systolic and diastolic blood pressure significantly declined (143 +/- 2 vs. 132 +/- 2 mm Hg, p < 0.001; 92 +/- 2 vs. 85 +/- 2 mm Hg, p < 0.001). In addition, the fasting diet produced a significant decrease in total cholesterol, LDL cholesterol, triglycerides, as well as basal glycaemia and insulinaemia (p < 0.001) Before the fasting diet, OGTT was normal in 76% of patients, whereas 21% of patients showed glucose intolerance, and 4% of patients diabetes mellitus. After the fasting diet, OGTT was normal in 88% of patients, whereas 12% of patients still had signs of glucose intolerance (p < 0.05). In addition, insulin resistance significantly (p < 0.05) increased from 54 +/- 6% to 89 +/- 13% after the fasting diet. CONCLUSION: The three-week fasting diet in extremely obese patients produced a significant decrease and normalization of blood pressure, decrease in lipids, and improvement in glucoregulation including the increase in insulin sensitivity.
Beneficial effects of intermittent fasting and caloric restriction on the cardiovascular and cerebrovascular systems. J Nutr Biochem. 2005 Mar;16(3):129-37. Mattson MP, Wan R. Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, MD 21224, USA.
Intermittent fasting (IF; reduced meal frequency) and caloric restriction (CR) extend lifespan and increase resistance to age-related diseases in rodents and monkeys and improve the health of overweight humans. Both IF and CR enhance cardiovascular and brain functions and improve several risk factors for coronary artery disease and stroke including a reduction in blood pressure and increased insulin sensitivity. Cardiovascular stress adaptation is improved and heart rate variability is increased in rodents maintained on an IF or a CR diet. Moreover, rodents maintained on an IF regimen exhibit increased resistance of heart and brain cells to ischemic injury in experimental models of myocardial infarction and stroke. The beneficial effects of IF and CR result from at least two mechanisms--reduced oxidative damage and increased cellular stress resistance. Recent findings suggest that some of the beneficial effects of IF on both the cardiovascular system and the brain are mediated by brain-derived neurotrophic factor signaling in the brain. Interestingly, cellular and molecular effects of IF and CR on the cardiovascular system and the brain are similar to those of regular physical exercise, suggesting shared mechanisms. A better understanding of the cellular and molecular mechanisms by which IF and CR affect the blood vessels and heart and brain cells will likely lead to novel preventative and therapeutic strategies for extending health span. |